Patient-specific models in human physiology

Yuri Vassilevski

INM RAS

dedicated to the 90th anniversary of G.I.Marchuk

June 9, 2015

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Supported by G.I.Marchuk

- Informal society of modelers and mathematicians since 2010
- Activities
 - Series of workshops
 - Special issues in international journals
 - Website dodo.inm.ras.ru/biomath

Series of workshops at INM RAS

- 1. 15-16 June 2010: 16 talks
- 2. 11-12 January 2011: 18 talks
- 3. 27-28 October 2011: 21 talks
- 4. 11-12 October 2012: 20 talks
- 5. 29-30 October 2013: 24 talks
- 6. 29-31 October 2014: 41 talks 4th workshop MMM in biology and medicine

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Series of workshops at INM RAS

- 1. 15-16 June 2010: 16 talks
- 2. 11-12 January 2011: 18 talks
- 3. 27-28 October 2011: 21 talks
- 4. 11-12 October 2012: 20 talks
- 5. 29-30 October 2013: 24 talks
- 6. 29-31 October 2014: 41 talks 4th workshop MMM in biology and medicine
- ▶ In total about 140 talks, more than 120 participants/members

Series of workshops at INM RAS

- 1. 15-16 June 2010: 16 talks
- 2. 11-12 January 2011: 18 talks
- 3. 27-28 October 2011: 21 talks
- 4. 11-12 October 2012: 20 talks
- 5. 29-30 October 2013: 24 talks
- 6. 29-31 October 2014: 41 talks 4th workshop MMM in biology and medicine
- ► In total about 140 talks, more than 120 participants/members The next conference will be in the end of October 2015.

Special issues of journals

Peer-reviewed papers in

- 1. Math.Modelling of Natural Phenomena 6, No.7, 2011
- 2. Rus. J. Numer.Analysis and Math.Modelling 26, No.6, 2011
- 3. Rus. J. Numer.Analysis and Math.Modelling 27, No.5, 2012
- 4. Rus. J. Numer.Analysis and Math.Modelling 28, No.5, 2013
- 5. Rus. J. Numer.Analysis and Math.Modelling 29, No.5, 2014

dodo.inm.ras.ru/biomath

Future of medicine is treatment of an individual on the basis of tracking its immunologic, endocrinologic, vascular features

G.I.Marchuk

Basic issues:

computational domain (human body, organs, tissues ...)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Basic issues:

computational domain (human body, organs, tissues ...)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

equations

Basic issues:

computational domain (human body, organs, tissues ...)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- equations
- parameters, coefficients

Basic issues:

computational domain (human body, organs, tissues ...)

- equations
- parameters, coefficients
- applications

Our team (co-authors):

- Sergey Simakov (MIPT, INM RAS)
- Alexander Danilov (INM RAS, MIPT)
- Maxim Olshanskii (University of Houston, INM RAS)
- Igor Konshin (CC RAS, INM RAS)
- German Kopytov (Baltic Federal University, INS RAS)

- Victoria Salamatova (MIPT, INM RAS)
- Tatiana Dobroserdova (INM RAS, MIPT)
- Yuri Ivanov (INM RAS, MIPT)
- Timur Gamilov (MIPT)
- Alexandra Yurova (MSU, MIPT)
- Vasily Kramarenko (MIPT)
- Nina Gorodnova (INM RAS)
- Roman Pryamonosov (MSU)

Our team is distributed:

- Moscow Institute of Physics and Technology
 - Chair of numerical mathematics
 - Chair of computational technologies and modelling
 - Laboratory of human phsysiology
- INM RAS
 - Working group for modelling of blood flows and vascular pathologies

Our team is distributed:

- Moscow Institute of Physics and Technology
 - Chair of numerical mathematics
 - Chair of computational technologies and modelling
 - Laboratory of human phsysiology
- INM RAS
 - Working group for modelling of blood flows and vascular pathologies

- Russian Science Foundation 2014-2016
- Federal Target Program "Academic and pedagogical staff of innovative Russia" 2010-2012
- Russian Foundation for Basic Research
- Russian Federation President Grants (2013-2016)

Technology overview

A. A. Danilov, D. V. Nikolaev, S. G. Rudnev, V. Yu. Salamatova and Yu. V. Vassilevski, Modelling of bioimpedance measurements: unstructured mesh application to real human anatomy. *Russ. J. Numer. Anal. Math. Modelling*, 2012 27 (5), 431–440

Visible Human Project

Visible Human Project U.S. National Library of Medicine www.nlm.nih.gov/research/visible

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

ъ

Visible Human Project

Visible Human Project U.S. National Library of Medicine www.nlm.nih.gov/research/visible

・ロト ・聞ト ・ヨト ・ヨト

э

ITK-SNAP software

$\ensuremath{\mathsf{ITK}}\xspace{-}\ensuremath{\mathsf{SNAP}}\xspace$ free software for Visualization and Segmentation

ITK-SNAP software

ITK-SNAP free software for Visualization and Segmentation

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣べ⊙

High resolution segmented model of VHP torso

 $\begin{array}{l} 567\times 305\times 843 \text{ voxels} \\ 1\times 1\times 1 \text{ mm} \\ 26 \text{ organs and tissues} \end{array}$

Total 146m voxels, 68m material voxels

- 31

(日)、

Unstructured tetrahedral meshes

CGAL Mesh (www.cgal.org) - Delaunay mesh generation Ani3D (sf.net/p/ani3d) - mesh cosmetics

413 508 vertices, 2 315 329 tetraedra, 84 430 boundary faces

Full body male and female models

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ④ < ④ >

ECG model

Cardiac simulation using Chaste www.cs.ox.ac.uk/chaste

ECG model

- $\begin{aligned} \operatorname{div}(\mathbf{C}\nabla U) &= 0 & \text{in } \Omega \\ U &= U_h & \text{on } \Gamma_h \\ \mathbf{J}_n &= 0 & \text{on } \partial\Omega \setminus \Gamma_h \end{aligned}$
- U potential field
- ${\boldsymbol{\mathsf{C}}}$ conductivity tensor
- $\mathbf{E} =
 abla U$ intensity field
- $\boldsymbol{\mathsf{J}}=\boldsymbol{\mathsf{C}}~\boldsymbol{\mathsf{E}}~$ current density field

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 Γ_h heart surface

ECG model

Electrical potential field, 50ms after excitation

Personalized segmentation methods

- 1 Atlas based segmentation
- 2 Clustering and classification
- 3 Active contours and heuristics

Medical Computer Vision: Algorithms for Big Data Lecture Notes in Computer Science, 2014, Vol. 8848

Personalized segmentation methods

- 1 Atlas based segmentation
- 2 Clustering and classification
- 3 Active contours and heuristics

Medical Computer Vision: Algorithms for Big Data Lecture Notes in Computer Science, 2014, Vol. 8848

Personalized segmentation methods

- 1 Atlas based segmentation
- 2 Clustering and classification
- 3 Active contours and heuristics

Medical Computer Vision: Algorithms for Big Data Lecture Notes in Computer Science, 2014, Vol. 8848

Patient specific models

First step anthropometric adaptation

Simple fitting of the model

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Control points adaptation

A.Danilov, A.Yurova

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Piecewise affine mapping in control plane

Control points adaptation

A.Danilov, A.Yurova

Coronary vessels extraction

R.Pryamonosov

Aorta segmentation pipeline: (a) red circle corresponds to aorta cut, (b) connected initial mask, (c) output of isoperimetric distance trees contains a noisy aorta mask and parts of coronary vessels, (d) shrinking mask, (e) expanding mask provides the aorta segmentation.

Frangi vesselness filter detects ostia points and coronary vessels

Coronary vessels 3D mesh

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

63453 tetrahedra, 17153 vertices

Coronary vessels 3D mesh

A.Danilov, T.Dobroserdova

pressure field at different time steps

Vessels sceletonization

Fast and robust centerline extraction

(日) (四) (王) (日) (日) (日)

Graph network extraction

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Local graph adaptation

Hemodynamic equations

A.Kholodov, S.Simakov

(日) (日) (日) (日) (日) (日) (日) (日)

Mass and momentum balance

$$\frac{\partial S_k}{\partial t} + \frac{\partial (S_k u_k)}{\partial x} = 0,$$

$$\frac{\partial u_k}{\partial t} + \frac{\partial (u_k^2}{2} + \frac{p_k}{\rho}) / \frac{\partial x}{\partial x} = f_{fr}(S_k, u_k),$$

k is index of the tube, t is the time, x is the distance along the tube, ρ is the blood density (constant), $S_k(t,x)$ is the cross-section area, $u_k(t,x)$ is the linear velocity averaged over the cross-section, $p_k(S_k)$ is the blood pressure, f_{fr} is the friction force

Hemodynamic equations

A.Kholodov, S.Simakov At the vessels junctions the Poiseuille's pressure drop and mass conservation

$$p_{k}\left(S_{k}\left(t,\tilde{x}_{k}\right)\right) - p_{node}^{I}\left(t\right) = \varepsilon_{k}R_{k}^{I}S_{k}\left(t,\tilde{x}_{k}\right)u_{k}\left(t,\tilde{x}_{k}\right), k = k_{1}, k_{2}, \dots, k_{M},$$
$$\sum_{k=k_{1},k_{2},\dots,k_{M}}\varepsilon_{k}S_{k}\left(t,\tilde{x}_{k}\right)u_{k}\left(t,\tilde{x}_{k}\right) = 0,$$

 $\varepsilon = 1, \tilde{x}_k = L_k$ for incoming tubes, $\varepsilon = -1$, and $\tilde{x}_k = 0$ for outgoing tubes, R'_k is the hydraulic resistance

(日) (日) (日) (日) (日) (日) (日) (日)

finite differences approximation of compatibility conditions along outgoing characteristics

Hemodynamic equations

A.Kholodov, S.Simakov

Elasticity of the tube wall:

$$p_k(S_k) - p_{*k} = \rho c_k^2 f(S_k)$$

Virtual fractional flow reserve

S.Simakov et al.

Virtual fractional flow reserve

S.Simakov et al.

Vessel	Measured FFR	Virtual FFR	Difference
LAD-1	0.51	0.58	+14%
LCA-1	0.72	0.84	+17%
LCX-1	0.59	0.61	+3%
LAD-2	0.74	0.78	+5%
RCA-2	0.93	0.87	-5%

Thank you for your attention!